设为首页 - 加入收藏  
您的当前位置:首页 >Mpos机 >pos机薪资体系,用Python分析BOSS直聘的薪资数据 正文

pos机薪资体系,用Python分析BOSS直聘的薪资数据

来源:正规POS机编辑:Mpos机时间:2024-10-13 05:08:47

网上有很多关于pos机薪资体系,用Python分析BOSS直聘的薪资析B薪资薪资数据的知识,也有很多人为大家解答关于pos机薪资体系的体系问题,今天乐刷官方代理商(www.zypos.cn)为大家整理了关于这方面的数据知识,让我们一起来看下吧!

本文目录一览:

1、薪资析B薪资pos机薪资体系

pos机薪资体系,用Python分析BOSS直聘的薪资数据

pos机薪资体系

推荐学习金三即过,体系这300道python高频面试都没刷,数据银四怎么闯?数据来源

数据来源于BOSS直聘,薪资析B薪资说实话,体系现在的数据招聘网站,做得比较好的薪资析B薪资还是BOSS直聘,其相关的体系数据、报告等都是数据比较有代表性的。今天我们就来看看相关的薪资析B薪资数据吧!

pos机薪资体系,用Python分析BOSS直聘的薪资数据

数据获取

BOSS直聘上有这么一个接口,体系可以很好的数据获取当前不同岗位,不同城市的薪资水平

pos机薪资体系,用Python分析BOSS直聘的薪资数据

www.zhipin.com/wapi/zpboss…

可以很方便的获取比较详细的薪资数据

import requestsheaders = {'accept': 'application/json, text/plain, */*', 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 11_0_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36'}querystring = {"positionId":"100109","industryId":"0","cityId":"0","companySize":"0","financingStage":"0","experienceCode":"0"}job_statics_url = 'https://www.zhipin.com/wapi/zpboss/h5/marketpay/statistics.json'job_statics_data = requests.get(job_statics_url, params=querystring, headers=headers)

这样,就可以获取到我们想要的 json 数据了

下面我们就可以简单地来分析下相关的薪资数据了

数据分析

薪资分位值

在我们获取到的数据当中,就有分位值的数据,可以方便的获取

job_statics_data_json = job_staticis_data.json()job_statics_data_json['zpData']['salaryByPoints']

接下来就可以整理横纵坐标轴了

statics_x = []statics_y = []for i in job_statics_data_json['zpData']['salaryByPoints']: statics_x.append(i['name'] + '\' + i['title']) statics_y.append(i['salary'])

下面开始作图

import pyecharts.options as optsfrom pyecharts.charts import Line, Bar, Pie, Calendar, WordCloudfrom pyecharts.commons.utils import JsCodefrom pyecharts.globals import SymbolTypex_data = statics_xy_data = statics_ybackground_color_js = ( "new echarts.graphic.LinearGradient(0, 0, 0, 1, " "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)")area_color_js = ( "new echarts.graphic.LinearGradient(0, 0, 0, 1, " "[{offset: 0, color: '#eb64fb'}, {offset: 1, color: '#3fbbff0d'}], false)")c_line = ( Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js))) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="薪资", y_axis=y_data, is_smooth=True, is_symbol_show=True, symbol="circle", symbol_size=6, linestyle_opts=opts.LineStyleOpts(color="#fff"), label_opts=opts.LabelOpts(is_show=True, position="top", color="white"), itemstyle_opts=opts.ItemStyleOpts( color="red", border_color="#fff", border_width="360px",height="auto" />

margin=30, color="#ffffff63"), axisline_opts=opts.AxisLineOpts(is_show=False), axistick_opts=opts.AxisTickOpts( is_show=True, length=25, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"), ), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f") ), ), yaxis_opts=opts.AxisOpts( type_="value", position="right", axislabel_opts=opts.LabelOpts(margin=20, color="#ffffff63"), axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(width="360px",height="auto" />

可以得到一个还不错的折线图

可以看到,业内Python的薪资水平,大部分应该都处于1万左右,这个薪资水平其实并不太高,看来纯的Python岗位并不太吃香,要想获得更高的薪资,还是需要有更多的技能傍身!

薪资区间分布

下面再来看看薪资的分布情况

statics_x = []statics_y = []for i in job_statics_data_json['zpData']['salaryByDistributed']: statics_y.append(i['percent']) statics_x.append(i['salaryRange'])def bar_chart(x, y) -> Bar: background_color_js = ( "new echarts.graphic.LinearGradient(0, 0, 0, 1, " "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)" ) c = ( Bar(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js))) #Bar() .add_xaxis(x) # .add_xaxis(searchcount.index.tolist()[:10]) .reversal_axis() .add_yaxis("", y, label_opts=opts.LabelOpts(position='inside', formatter="{c}%"), color='plum', category_gap="60%" ) .set_global_opts(xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-30, formatter="{value}%"), axisline_opts=opts.AxisLineOpts(is_show=False),), yaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(is_show=True), axisline_opts=opts.AxisLineOpts(is_show=False), axistick_opts=opts.AxisTickOpts( is_show=True, length=25, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"), ),) ) .set_series_opts( itemstyle_opts={ "normal": { "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{ offset: 0, color: 'rgba(255,100,97,.5)' }, { offset: 1, color: 'rgba(221,160,221)' }], false)"""), "barBorderRadius": [30, 30, 30, 30], "shadowColor": 'rgb(0, 160, 221)', }} ) ) return c

来看看薪资分布情况

可以看到,15K以上的薪资还是占了16%以上,而占比最大的薪资区间则是7-9K

工作年限薪资分布

下面我们继续来看看薪资水平和工作年限之间的关系

statics_x = []statics_y = []for i in job_statics_data_json['zpData']['salaryByWorkExp']: statics_y.append(i['percent']) statics_x.append(i['workExp'] + ':' + str(i['aveSalary']))background_color_js = ( "new echarts.graphic.LinearGradient(0, 0, 0, 1, " "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)")c = ( Pie(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js))) .add( "", list(zip(statics_x, statics_y)), radius=["40%", "55%"], label_opts=opts.LabelOpts( position="outside", formatter="{a|job}{abg|}\{hr|}\ {b|{b}: }{per|{d}%} ", background_color="#eee", border_color="#aaa", border_width="360px",height="auto" />

可以看到,下面的图片还是比较直观的

1-3年的应聘者还是最多的,占比达到了50%+,这个经验段,确实是职场的主力军了!

任职年龄分布

职场的年龄也是一个热点话题,35+岁的程序员们,总是一言难尽啊

statics_x = []statics_y = []for i in job_statics_data_json['zpData']['salaryByAge']: statics_x.append(i['ageRange']) statics_y.append(i['people'])def bar_chart_age(x, y) -> Bar: background_color_js = ( "new echarts.graphic.LinearGradient(0, 0, 0, 1, " "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)" ) c = ( Bar(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js))) #Bar() .add_xaxis(x) # .add_xaxis(searchcount.index.tolist()[:10]) # .reversal_axis() .add_yaxis("", y, label_opts=opts.LabelOpts(position='inside', formatter="{c}"), color='plum', category_gap="60%" ) .set_global_opts(xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-30, formatter="{value}"), axisline_opts=opts.AxisLineOpts(is_show=False),), yaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(is_show=True), axisline_opts=opts.AxisLineOpts(is_show=False), axistick_opts=opts.AxisTickOpts( is_show=True, length=25, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"), ),) ) .set_series_opts( itemstyle_opts={ "normal": { "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{ offset: 0, color: 'rgba(255,100,97,.5)' }, { offset: 1, color: 'rgba(221,160,221)' }], false)"""), "barBorderRadius": [30, 30, 30, 30], "shadowColor": 'rgb(0, 160, 221)', }} ) ) return c

数据很能说明问题

可以看到,35岁以下的占据了绝大多数,可想而知,35+的程序员生存状况是多么的糟糕!

月薪环比变化

我们通过每个月的薪资变化,来看看哪个月找工作比较有机会获得更高的薪资呢

statics_x = []statics_y = []for i in job_statics_data_json['zpData']['salaryByMonth']: statics_x.append(i['year'] + '-' + i['month']) statics_y.append(i['monthAveSalary'])x_data = statics_xy_data = statics_y

每月薪资变化

可以看到,去年2月份的薪资水平是最高的,之后一路下滑,再之后就基本趋于稳定了,7-8K这个平均水平

薪资城市分布

通过Pycharts画地图还是蛮方便的

statics_x = []statics_y = []for i in job_statics_data_json['zpData']['salaryByCity']: if i['cityList']: statics_x.append(i['cityList'][0]['cityAveMonthSalary']) statics_y.append(i['provinceName'])c = ( Map() .add("全国薪资", [list(z) for z in zip(statics_y, statics_x)], "china") .set_global_opts( title_opts=opts.TitleOpts(title=""), visualmap_opts=opts.VisualMapOpts(max_=15000, min_=6000), ))

全国薪资分布

好了,今天的分享就到这里了,希望对大家有所帮助!

作者:周萝卜原文链接:https://juejin.cn/post/6930118946415312909

以上就是关于pos机薪资体系,用Python分析BOSS直聘的薪资数据的知识,后面我们会继续为大家整理关于pos机薪资体系的知识,希望能够帮助到大家!

0.2026s , 10294.9765625 kb

Copyright © 2024 Powered by pos机薪资体系,用Python分析BOSS直聘的薪资数据,正规POS机  

sitemap

Top